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Abstract 

Background: The national shortage of kidney organs has led to divergent waiting times for patients seeking 

transplantation in different regions of the country. Policy-makers wish to promote greater equity, but only with 

minimal disruption to current patients. 

Objective: KSHARE2 is a proposal to ameliorate geographic disparity with modest changes to an already 

complex allocation system. The model identifies a national and regional partner for each Donation Service Area 

(DSA) and redirects a pre-specified proportion of organs to localities with greater need. 

Methods: We model each DSA as a M/M/1/∞ +M queue and identify 3 performance measures: waiting time to 

transplantation, transplantation rate, and mortality.  Using Efficiency-Driven heavy traffic approximations, we 

deduce relationships among the performance measures while simultaneously solving a deterministic mixed-

integer linear program to determine the optimal sharing partners for each DSA. To incorporate stochasticity, we 

initialize a more accurate simulation model of the allocation system with the deterministic solution and then 

employ a heuristic to find better partnerships. The long-run behavior of the proposed policy is then analyzed 

using heavy traffic approximations. 

Results: When 40% of available kidney organs are redirected, the national range of average transplant rates, 

mean waiting times, and mortalities decreased by approximately 29%, 39%, and 29%,  respectively - indicating 

significantly less disparity than the current allocation system.  Smaller proportions of redirected kidneys yield 

lesser reductions. 

Conclusions: Promoting greater fairness in patients’ transplantation experiences and outcomes  is critical and 

discovering practicable solutions for complex applications requires several methodologies.  

  



Introduction 

 End Stage Renal Disease (ESRD) currently affects over 700,000 people in the United States (US) (1).  

ESRD patients receive treatment in the form of dialysis or kidney transplantation.  Compared to dialysis, kidney 

transplantation provides increased quality of life, decreased morbidity and mortality, and is more cost-effective 

(2-11).  Unfortunately the national organ shortage has continued to worsen over time.  While over 94,000 

patients are currently listed for kidney transplantation, only 17,000 kidney transplants took place in 2012 (12, 

13).  The equitable distribution of this scarce organ supply is therefore paramount. 

 The United Network for Organ Sharing (UNOS) is responsible for establishing organ allocation policies.  

Since kidney organs must be allocated efficiently to avoid the harmful effect of cold ischemic time (CIT), 

UNOS segmented the country to prioritize localized allocation (14, 15).  First, the country is divided into eleven 

UNOS regions, which are groupings of neighboring states.  Each of these regions is further subdivided into 

Donor Service Areas (DSAs) with 58 DSAs in total in the US.  Each DSA has a designated Organ Procurement 

Organization (OPO) that is responsible for facilitating the donation and allocation of all locally procured kidney 

organs.  When a kidney is donated, the organ is first offered to patients in the DSA of procurement.  If local 

allocation is not successful, then the organ is offered to patients listed in the UNOS region of procurement and 

ultimately nationally until a recipient is found (15). 

 A patient’s ability to receive a kidney transplant depends on where they seek transplantation. Moreover, 

mortality rates and waiting times have continued to diverge across regions over time (16, 17).  In 1998, the 

Department of Health and Human Services (HHS) released the “Final Rule,” stating that organ allocation 

should be geographically equitable (18).  Since this ruling though, no changes have been  implement explicitly 

regarding the  geographic distribution of kidney organs, and by 2009, median waiting times to kidney 

transplantation ranged across DSAs from 0.61 to 4.57 years (19).  UNOS has recently shown a renewed interest 

in reducing geographic disparities, tasking each organ-specific allocation committee to develop geographic 

fairness metrics by June 30, 2013 (20). While there is yet no established consensus for measuring geographic 

disparity for kidney allocation, three performance measures have been proposed and analyzed: transplantation 

rate, waiting time to transplantation and pre-transplant mortality (16). 



 Other attempts have been made to resolve the geographic inequalities (21-23). This past research has 

focused on redesigning the configuration of all UNOS regions for the purposes of reducing geographic 

disparity.  While this will not change the fundamental design of the geographic kidney allocation policy, it still 

imposes some barriers to beneficial implementation.  First, UNOS policy changes are discussed at the regional 

level, with each UNOS region represented on the national UNOS kidney committee (24).  In changing the 

UNOS region configurations, UNOS boards will also need to be reformed, which may be difficult for transplant 

community acceptance.  Second, UNOS regions have traditionally been compact, consisting of neighboring 

states.  If newly configured regions are not compact and/or cover a large geographic area, it would be 

practically difficult for OPOs to habitually share biological materials over longer distances to ensure there is a 

negative crossmatch, or a suitable match for a distant transplant recipient.  Finally, there is no current evidence 

that such a system change would prove beneficial. 

 Fortunately, there is evidence however that a Statewide Sharing Local Allocation Variance can be 

beneficial in reducing geographic disparities in the states where it was implemented (25).  With statewide 

sharing variance, a donated kidney is still offered first to patients in the DSA of procurement.  If this allocation 

is unsuccessful, the kidney is offered to patients listed in other DSAs in the same US state prior to regional and 

national kidney offers (25).  This variance is limited though in its potential national impact since sharing 

partnerships have historically been limited to DSAs in the same state.  This empirical result is the foundation of 

our proposal: by identifying select partners for each DSA and having an intermediate allocation prior to regional 

allocation, we can help mitigate disparity without preempting local allocation. A regional and national partner 

for each DSA would help ameliorate the regional and national inequalities respectively. There is however a 

limitation on the number of such partnerships. Our discussions with clinicians revealed skepticism in allowing 

for more than one non-regional partnership, and therefore we focus our analysis on the case where each DSA is 

paired with one regional and one national partner.     

 The remainder of this paper is organized as follows.  In Section 2, we discuss a stylized queueing 

network adaptation of the kidney transplantation system and fluid approximations for selected performance 

measures in the long-run.  In Section 3, we detail an alternative kidney allocation strategy: KSHARE2, and in 



Section 4 we formulate a deterministic mixed-integer linear optimization model in accordance with this new 

strategy that is aimed to  improve disparity by identifying an optimal regional- and national- sharing partner for 

each DSA. Section 5 extends the deterministic model with a more realistic discrete-event simulation, and then 

discusses the proposed kidney sharing strategy and its impact on national geographic disparity.  In Section 6, we 

again employ the heavy-traffic approximations to discuss how using the new allocation strategy will impact the 

system prospectively.  We conclude in Section 7 by summarizing out findings and outlining the need for future 

research. 

 

2. Kidney Transplantation Queueing Network and Long-Run Fluid Approximations of System Behaviors 

 At the system level, the national kidney transplantation network consists of 58 individual DSA waitlists.  

Since patients mainly receive blood type-compatible (ABO) kidneys for transplantation, each DSA waitlist 

decomposes by patient blood type.  Thus, in essence there are four separate kidney transplantation systems by 

blood type.  Each DSA blood type patient waitlist operates separately and they are connected together by the 

national organ allocation process. 

2.1. The Kidney Transplantation Network 

 For a single DSA, patients of a specific blood type b arrive to their DSA i’s corresponding blood type 

waitlist according to interarrival rate distribution        in year t.  As established  by Davis et. al., this patient 

interarrival rate distribution follows an exponential distribution with increasing mean interarrival rates over time 

(26).  Once a patient has joined the list, they are primarily prioritized by their time in the system. 

 Patients are removed from the waitlist for one of two reasons.  First, a patient may survive long enough 

on the list to reach the front of the waitlist and find a suitable match for transplantation.  Patients are “serviced” 

from the list according to the interarrival time between organs of a specific blood type b arriving for transplant 

in DSA i in time period t,        – also established to be exponentially distributed (26).  Unlike patient 

interarrival rates, the interarrival rate of kidneys for transplantation is not significantly changing over time.  This 

transplant “service” time depends on the national kidney allocation policy and kidney procurement rates for 

each DSA.  Let        represent the interarrival rate of kidneys of blood type b being donated for transplantation 



in DSA i in time period t.  This interarrival rate is exponentially distributed and time-varying (26).  In 

accordance with a given kidney allocation policy, the likelihood that a kidney procured in DSA i will be shared 

with another DSA j in time period t can be estimated from past allocation data,        .   The transplant service 

rate,       , is then determined by the linear combination of kidney procurement rates from each DSA. 

        ∑               
      

 

 Patients can also be removed from the transplant system because they are too sick to transplant and/or 

die.  This happens because ESRD patients can only sustain their life on dialysis for a limited amount of time..  

The individual mean abandonment time from a DSA i’s waitlist of a patient with blood type b in year t can be 

represented by the mean total dialysis time of an ESRD patient,    
     . Then,        represents the individual 

patient abandonment rate from DSA i’s waitlist. Davis et. al. also showed that the individual abandonment time 

distribution is exponentially distributed (26).   

 Finally, because of the national organ shortage, each DSA blood type waitlist “queue” is overloaded 

with a traffic intensity,        
      

      
  .  Given this information and the exponential properties of each 

DSA’s waitlist, each DSA waitlist may be modeled as a heavy-traffic M/M/1/r+M queueing system, with all 

DSA waitlist queues connected by the national organ allocation policy.   

2.2. Fluid Approximations of Long Run Waitlist Behaviors 

Changing the national kidney allocation policy involves multiple steps and many hurdles.  First, the 

UNOS Kidney Committee, consisting of membership from all eleven UNOS regions, develops a new policy 

given the latest data and requests from the general community for change.  Next, the proposed policy is released 

for Public Comment, whereby advocate groups, current patients, and the general public can provide feedback.  

If the policy is received favorably in the Public Comment period, the proposed policy proceeds for review by 

the UNOS General Board who certifies or denies the proposal (27). 

Because of this multi-level process, complex changes to the kidney transplantation system are difficult 

to pass to implementation.  For example, in 2009 the UNOS Kidney Committee attempted to change how 

patients were prioritized for transplant using a Life Years from Transplant (LYFT) score (28).  This ranking 



score was too complex for patients to understand their placement in the system and advocacy groups worried 

how it would negatively impact older patient subgroups.  When the LYFT policy failed, the American Society 

of Transplant Surgeons (ASTS) urged that future proposed policies be presented through frequent 

communication with members of the general public, be easily comprehendible, and provide a stepwise 

implementation structure to phase in a new policy over time (29). Therefore, our goal is to eliminate geographic 

disparity in long-run DSA waitlist behaviors across all DSAs using small, incremental changes over time.  We 

will now construct the long-run fluid approximations of transplant system outputs for each queue.  

In Section 2.1, the DSA kidney waitlists were defined and discussed as heavy-traffic M/M/1/r+M 

queueing systems, connected together via the national kidney allocation policy. Previous work by Whitt et al. 

(2004) defines fluid approximations for long run queue behaviors for M/M/s/r+M queueing networks (30). In 

the Appendix, these long run queue behaviors are shown to extend to our transplant system queueing network 

setting. We will now motivate why each long run queue behavior is important to discuss geographic disparity in 

the transplant system setting. 

 Long-Run Transplant Rate:  Upon joining any DSA’s waitlist, a patient should have the same likelihood 

of receiving a kidney transplant over time.  In 1999, the Institute of Medicine supported the use of transplant 

rate as a measure of geographic disparity (31).  In the long-run, steady state of the system, this likelihood of a 

patient listed in DSA i of blood type b receiving a transplantation over time, TRib(t) is approximated by the 

relationship between        and       : 

        
      

      
                                    

 Long-Run Waitlist Mortality Rate:  Upon joining any DSA’s waitlist, a patient should have the same 

likelihood of becoming too sick and/or dying on the waitlist prior to transplantation.  A goal in society is to 

minimize this probability as much as possible across all DSAs.  In the long-run, steady-state of the system, the 

waitlist mortality rate for patients listed in DSA i of blood type b, MRib(t) is approximated by the following 

relationship between        and       : 

        
             

      
                                    



 Long-Run Mean Waiting Time to Transplantation:  Patients are currently prioritized on the kidney 

transplant waitlist primarily according to their waiting time in the system (15).  Therefore, in the long-run, 

steady-state transplant system, we would like all patients to wait the same amount of time for transplantation.  

The mean long-run waiting time for patients in DSA i of blood type b, WTib(t), can be approximated by the 

following relationship between       ,       , and       : 
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 Each of these measures need to be stabilized as much as possible via changes to the national organ 

allocation policy, and subsequently       .  Creating an optimization model to determine alternative values of 

       would result in the creation of highly complex, multi-objective non-linear optimization models.  

Therefore, let us revisit these three fluid approximations.  As shown below, each fluid approximation can be 

represented by a monotone function of transplant rate.  One minor assumption must be made to achieve this 

simplification is that the abandonment rates at each DSA i for blood-type b at time t is the national average; 

namely          ̅     .  The assumption implies that all patients can survive on average the same amount of 

time pre-transplantation and ignoring the regional differences in dialysis quality.  Thus, we can rewrite the three 

performance metrics as the following: 
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 Given the approximation, geographic disparity with respect to all long-run system outputs can best be 

reduced by focusing on the reduction in transplant rate disparity.  We will now move forward to discuss an 

alternative kidney sharing strategy that aims to reduce national long run kidney transplant rate disparity as much 

as possible. 

 



3. KSHARE2 Kidney Sharing Strategy 

 Previous analysis has shown that the statewide sharing local allocation variance has improved 

geographic disparity in the states where it was implemented (32).  By this variance, if a procured kidney cannot 

be allocated locally, the organ is offered to patients listed in other DSAs in the same state prior to regional and 

national kidney offerings (25).  While this strategy functions well for reducing statewide geographic disparity, 

implementing statewide sharing in all states will still not eliminate national geographic disparity as disparity 

will still remain between states.   

A past analysis focused on testing a statewide sharing-based kidney sharing strategy, which allows 

sharing partnerships to be formed between DSAs in different states but still within a feasible distance for 

habitual sharing, known as KSHARE (36).  This analysis showed that outside-of-state sharing partnerships that 

are within 600 miles from the DSA of sharing can reduce national disparity.  This strategy fails however to be 

potentially implementable since to date, no organ allocation policy or local allocation variance has allowed for 

habitual sharing between DSAs in different UNOS regions (25).  Further, changing the retention of kidney 

organs locally, regionally or nationally will be a politically difficult challenge to garner transplant community 

support (37).  We will now develop a new alternative kidney sharing strategy KSHARE2 that takes these new 

concerns into consideration. 

 In KSHARE2, each DSA will have one regional DSA sharing partner and one national DSA sharing 

partner.  Following the KSHARE2 policy, when a kidney is not allocated locally, the kidney will be offered to 

the DSA’s regional sharing partner prior to full regional kidney sharing.  Then, if regional allocation is not 

possible, the kidney will be offered to the DSA’s national sharing partner prior to full national kidney sharing.  

KSHARE2 therefore adds two minor prioritizations to the current kidney allocation system.  The best regional 

and national sharing partner for each DSA is determined so as to best reduce national geographic disparity in 

long-run DSA transplant rates.  The feasible set of regional sharing partners for each DSA depends on the 

UNOS region of the DSA, ranging from 1 to 9.  The feasible set of national sharing partners for each DSA 

depends also on the UNOS region of the DSA, ranging from 48 to 56. 



 There are advantages and disadvantages to the KSHARE2 strategy.  First, KSHARE2 presents a small 

change to the current UNOS kidney allocation policy and does not impact the retention of local, regional, and 

national kidney organs.  Instead, the most disparate regional and national DSA are given priority for all kidneys 

not used locally in order to improve their system outputs. Also, by explicitly identifying each DSA’s regional 

and national partner and establishing a formal relationship, individual DSAs can better manage logistics than if 

they had multiple,  unspecified partners.   A possible drawback to the KSHARE2 kidney sharing strategy is that 

not all DSAs will be on the receiving end of any DSA sharing partnerships and will see a slight reduction in 

their annual transplant volume.  To reduce geographic disparity, however, changes to the flow of kidneys for 

allocation must be achieved.  In maintaining locally procured kidney levels and portions of their regional and 

national kidney allocation levels, each DSA will not incur a large organ deficit. 

 

4. Multi-Objective Optimization of Organ Flow to Improve Fluid Approximated Geographic Disparity 

 We will now discuss the formulation of the KSHARE2 optimization model.   

4.1. Objective Function 

As discussed in Section 2, the kidney transplantation system can be considered as the culmination of 

four DSA waitlist queuing networks with one for each blood type.  In addition, geographic disparity reduction 

will have to be represented by blood type.  We therefore aim to best reduce long run geographic disparity 

separately for each blood type while only establishing one consistent regional and national kidney sharing 

partnership for each DSA independent of blood type.  To calculate the overall geographic disparity, a weight set 

must be established to determine how each blood type’s geographic disparity contribution will be weighted in 

the multi-objective function.  One option would be to equally weight each blood type’s contribution.  This may 

not be preferable however since the number of patients seeking transplantation is not the same across all blood 

types.  Instead, we may take the perspective that geographic disparity should be reduced the most for the blood 

types with the most patients.  The proportion of new registrations each year having each specific blood type 

varies over time.  In Table 1 below, we show the distribution of patient registrations by blood type for 2000 

through 2009.  Instead of using the mean blood type distribution weights, we can minimize geographic disparity 



for the worst case blood type distribution scenario.  The optimal sharing partnerships will then be optimally 

robust against fluctuations to changes to the transplantation system. 

Table 1: Distribution of New Patient Arrival Blood Types (2000-2009) 

Year 

Proportion of New Patients (%) 

A AB B O 

2000 35.17 2.43 15.16 47.24 

2001 33.34 6.45 12.68 47.53 

2002 30.05 4.29 14.99 50.67 

2003 31.37 3.05 17.13 48.46 

2004 32.42 4.10 13.88 49.60 

2005 34.25 5.43 11.79 48.53 

2006 31.21 3.22 14.67 50.91 

2007 33.73 4.06 12.60 49.61 

2008 34.77 1.74 14.26 49.23 

2009 30.82 3.02 15.02 51.14 

4.2. KSHARE2 Model Assumptions 

 The KSHARE2 optimization model makes four assumptions about the present kidney transplantation 

system.  First, waitlisted patient growth and annual kidney procurement per DSA for each year is assumed to be 

the same as that in actual retrospective data.  Second, KSHARE2 ignores the stochastic and time-varying nature 

of the system, when in reality, we do not know the effect our change in policy will have on waitlisting and 

procurement rates.  Third, the model treats all patients equally and does not focus on racial, age, and other 

patient subgroups individually, but in stabilizing the overall DSA kidney transplant rate we intend to stabilize 

the rate across all patient groups.  Fourth, KSHARE2 assumes that if a kidney is offered to a DSA, then a 

patient in that DSA will accept the kidney.  We will examine the impact of the optimal KSHARE2 policy when 

these model assumptions are relaxed via simulation and sensitivity analyses. 

4.3. KSHARE2 Formulation 

 KSHARE2 is formulated as follows. 

 Parameters: Let Set I represent the set of all DSAs in the US.  For each DSA i, let set Ji represent the set 

of all DSAs in the same UNOS region as DSA i and let set Ni represent the set of all DSAs that are not in the 

same UNOS region as DSA i.  Let B represent the set of all possible blood types (A, AB, B, and O).  Let T 



represent the last year of the phase-in period.  Let wb represent a weight for blood type b from the weight set 

shown in Table 1.  Let sikb and zikb represent the α% of regionally and nationally allocated kidneys, respectively, 

that are procured in DSA i of blood type b in year k that are eligible for redistribution by KSHARE2. 

KSHARE2 will be solved and discussed for various values of α. Let oikb represent the remaining kidneys 

transplanted in DSA i of blood type b in year k that were allocated via current kidney allocation policy.  Let fib 

represent the number of patients of blood type b on DSA i’s waitlist at the beginning of the phase-in process.  

Let likb represent the number of new patient arrivals to DSA i’s waitlist in year k of blood type b, and let rikb 

represent the number of patient removals from DSA i’s waitlist in year k of blood type b.  Let aib represent the 

total number of patient arrivals to DSA i of blood type b by the end of year T. 

 Variables: Let Pijb represent the percentage of kidneys of blood type b shared from DSA i to a regional 

DSA sharing partner j each year according to KSHARE2.  Let Xinb represent the percentage of kidneys of blood 

type b shared from DSA i to a national DSA sharing partner n each year according to KSHARE2.  Let Dikb 

represent the number of patients of blood type b on DSA i’s waitlist at the start of year k.  Let Tikb represent the 

total number of transplants of blood type b in DSA i in year k.  Let Yij be a binary variable that is set equal to 1 

if DSA i establishes a regional sharing partnership with DSA j.  Let Zin be a binary variable that is set equal to 1 

if DSA i establishes a national sharing partnership with DSA n.  Let TRib represent the probability of 

transplantation for blood type b patients in DSA i, and let minTRb represent the minimum DSA probability of 

transplantation for blood type b. 

 Formulation: In Objective (1), we aim to minimize the worst-case weighted sum of blood type specific 

probability of transplantation geographic disparity – hereafter referred as the worst-case blood type weighted 

transplant rate disparity score.  In Constraint (2), we set the initial waitlist size in DSA i for all blood types b.  In 

Constraint (3), each DSA i’s waitlist of blood type b patients is updated annually based on the growth of 

patients, removals from the waitlist, annual transplants, and waitlist size from the previous year.  In Constraint 

(4), we set the number of transplants in DSA i of blood type b based on kidneys allocated to the DSA via 

KSHARE2 and current kidney allocation policy.  Constraint (5) ensures that all kidneys from DSA i of blood 

type b that are eligible for alternative regional sharing are allocated.  Constraint (6) confirms that sharing 



between regional DSAs can only occur if a regional sharing partnership is formed between DSA i and j.  

Constraint (7) makes sure that each DSA only has one regional sharing partner.  Similarly, Constraint (8) 

ensures that all kidneys from DSA i of blood type b that are eligible for sharing between national DSAs can 

only occur if a national sharing partnership is formed between DSAs i and n.  In Constraint (9), we confirm that 

sharing can only occur between national DSAs if a sharing partnership is formed between DSA i and DSA n.  

Each DSA can only have one national sharing partner as restrained in Constraint (10).  In Constraint (11), we 

calculate the probability of transplantation for each DSA i and blood type b at the end of the phase-in process.  

Constraint (12) determines the minimum DSA probability for transplantation for blood type b.  Finally, 

Constraints (13) and (14) establish non-negativity and binary restrictions for all variables. 
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 Solving the KSHARE2 optimization model provides the best, deterministic regional and national 

sharing partnership per DSA.  However, when using these sharing partnerships in actual kidney allocation, 

slightly different DSA sharing partnerships may provide additional improvement.  In Davis et al., 2013, we 



developed a discrete even simulation model of the kidney transplantation system, called KSIM2, to evaluate 

alternative kidney sharing strategies at the system level (38).  KSIM2 incorporates uncertainty in patient and 

organ arrival distributions when simulating the impact of an alternative kidney allocation policy and provides 

system outcomes at the DSA level for various patient demographics.  

Using KSIM2, we study the stochastic impact of using an alternative kidney sharing strategy on national 

geographic disparity by DSA and patient demographic.  Since simulation optimization methodologies are not 

yet advanced enough to optimize the stochastic flows of kidneys for this highly complex and constrained 

queueing network, we need to employ a heuristic technique. This heuristic technique searches for a sharing 

partnership swap for each DSA to improve upon the current reduction in geographic disparity. The DSA sharing 

partnership swap heuristic is repeated if an improvement is found. The heuristic search concludes once no 

improving sharing partnership swap is found for any DSA.  

 

5. Optimal KSHARE2 Kidney Sharing Strategy 

 Optimal KSHARE2 DSA sharing partnerships were determined using CPLEX optimization solver (39).  

KSIM2 with the inclusion of the heuristic described in Section 5 was used, running 100 replications of ten years 

of the transplantation system (2000-2009) for each possible sharing configuration possible.  Each replication of 

KSIM2 requires 52 minutes, 11.8 seconds CPU time.  While the heuristic in Section 4 was used, the 

deterministic sharing partnership configuration could not be improved upon.  We will now outline the optimal 

DSA sharing configuration and its ability to reduce geographic disparity after implementation over ten years. 

5.1. Optimal KSHARE2 DSA Sharing Configuration 

According to KSHARE2, each DSA has one regional and one national DSA sharing partner.  In Figure 

2, we can see that each DSA tends to share with the most disparate regional DSA and with one of the nationally 

most disparate DSAs.  In doing so, we increase the efficient access to shared kidneys for these worst-off DSAs. 



Figure 2: DSA Sharing Partnership Configuration for KSHARE2 with Blood Type 

 

5.2. Impact of DSA Sharing Levels on KSHARE2 Effectiveness 

The impact of KSHARE2 on reducing long-run transplant rate geographic disparity depends on the 

value of α used to dictate the percentage (α) of non-locally allocated kidneys that are eligible for allocation 

following KSHARE2.  We will now compare the worst-case blood type weighted transplant rate disparity score 

for various values of α, relative to the actual disparity score in 2009.  If α =10%, then the disparity is only 

reduced by 17.5% (from 5.20 to 4.29).  If α =50%, then the disparity is reduced by 43.7% (from 5.20 to 2.93).  

At its highest usage when α =100%, the disparity is reduced by 48.9% (from 5.20 to 2.66). Figure 3 shows the 

worst-case weighted disparity score for KSHARE2 stratified by α.  



Figure 3: Comparison of Worst-Case Disparity Scores in 2009 versus KSHARE2 for various sharing 

levels 

 
 Figure 3 shows that the worst-case disparity score is not significantly reduced when the percentage of 

regionally and nationally allocated kidneys for reallocation via KSHARE2 increases from 40% to 100%. 

Therefore, KSHARE2 can be effective without requiring significant DSA buy-in to the alternative sharing 

technique. When 40% of regionally and nationally allocated kidneys are reallocated according to KSHARE2’s 

optimal sharing partnerships, only 7% of all kidneys procured for transplantation are reallocated each year. The 

remaining 93% of procured kidneys are allocated according to current policy. 

We will now discuss the 40% sharing level KSHARE2 results in further detail. 

5.3. KSIM2 Simulated Impact of KSHARE2 

Using KSIM2, we modeled the effect of KSHARE2 on mean waiting time to transplantation, waitlist 

mortalities, and kidney transplant acceptance behaviors.  Table 2 summarizes the impact of KSHARE2 on mean 

waiting time to transplantation and waitlist mortalities by patient subpopulation of interest.  



Table 2: KSIM2 Simulated Geographic Disparity when using KSHARE2 versus Current Allocation 

Policy in 2009 

 KSHARE 2 Actual 

Patient Population of 

Interest 

Mean Waiting 

Time Disparity
** 

Number of DSA 

Waitlist Deaths 

Mean Waiting 

Time Disparity
** 

Number of DSA 

Waitlist Deaths 

Blood Type A     

All Patients 2.97 1,161 4.30 1,377 

< 18 3.35 110 3.79 168 

18-65 2.16 790 2.80 925 

> 65 2.62 261 2.82 284 

Non-Hispanic White 2.08 672 2.37 762 

Non-Hispanic Black 3.75 271 4.51 347 

Hispanic 3.51 158 3.95 194 

Asian 2.30 45 4.49 53 

Blood Type AB     

All Patients 2.53 132 4.10 140 

< 18 1.89 15 3.68 17 

18-65 1.60 94 2.64 99 

> 65 3.20 23 4.34 24 

Non-Hispanic White 1.65 56 2.63 59 

Non-Hispanic Black 2.92 58 4.58 60 

Hispanic 1.51 2 3.42 3 

Asian 3.66 15 6.28 16 

Blood Type B     

All Patients 4.70 688 6.40 719 

< 18 4.85 83 5.12 92 

18-65 4.44 462 4.80 482 

> 65 2.63 142 3.81 145 

Non-Hispanic White 4.14 239 5.43 246 

Non-Hispanic Black 4.63 334 5.97 344 

Hispanic 2.65 61 4.46 66 

Asian 3.43 51 6.67 55 

Blood Type O     

All Patients 3.48 2,296 4.80 2,450 

< 18 3.99 267 4.52 312 

18-65 3.28 1,525 3.51 1,620 

> 65 2.68 504 3.57 518 

Non-Hispanic White 3.24 1,025 4.22 1,080 

Non-Hispanic Black 4.38 750 7.49 788 

Hispanic 3.18 397 4.45 435 

Asian 3.35 69 6.73 79 

**Disparity represented as the difference between the maximum and minimum Donor Service Area (DSA) waiting time.   



5.3.1. Mean Waiting Time to Transplantation 

 By 2009, the range in mean waiting times to kidney transplantation fell significantly for each blood type 

when following KSHARE2.  For blood type A patients, the range in DSA mean waiting times to transplantation 

fell from 4.30 years (0.78 – 5.08 years) in 2000 to 2.97 years (1.02 – 3.99 years) in 2009, representing a 30.9% 

reduction.  For blood type AB patients, the range in DSA mean waiting times to transplantation fell from 4.07 

years (0.47 – 4.54 years) in 2000 to 2.53 years (0.67 – 3.21 years) in 2009, representing a 37.8% reduction.  For 

blood type B patients, the range in DSA mean waiting times to transplantation fell from 6.41 years (1.12 – 7.53 

years) in 2000 to 4.70 years (1.34 – 6.03 years) in 2009, representing a 27.0% reduction.  Finally, for blood type 

O patients, the range in DSA mean waiting times to transplantation fell from 4.76 years (1.38 – 6.15 years) in 

2000 to 3.48 years (1.42 – 4.90 years) in 2009, representing a 26.9% reduction. 

 The range in DSA mean waiting times to kidney transplantation fell significantly for all age 

subpopulations in this analysis. For the patient population less than 18 years of age, the range in DSA mean 

waiting times fell from 3.82 years in 2000 to 2.35 years in 2009 for blood type A patients, 4.58 years in 2000 to 

1.89 years in 2009 for blood type AB patients, 5.45 years in 2000 to 4.85 years in 2009 for blood type B 

patients, and 5.11 years in 2000 to 3.99 years in 2009 for blood type O patients, representing 12.3%, 58.8%, 

11.0%, and 21.9% reductions, respectively. For the patient population between 18 and 65 years of age, the 

range in DSA mean waiting times fell from 2.87 years in 2000 to 2.16 years in 2009 for blood type A patients, 

4.18 years in 2000 to 1.60 years in 2009 for blood type AB patients, 5.19 years in 2000 to 4.44 years in 2009 for 

blood type B patients, and 3.64 years in 2000 to 3.28 years in 2009 for blood type O patients, representing 

24.6%, 61.6%, 14.5%, and 9.9% reductions, respectively. For the patient population older than 65 years of age, 

the range in DSA mean waiting times fell from 3.02 years in 2000 to 2.62 years in 2009 for blood type A 

patients, 3.93 years in 2000 to 3.20 years in 2009 for blood type AB patients, 3.40 years in 2000 to 2.63 years in 

2009 for blood type B patients, and 3.95 years in 2000 to 2.68 years in 2009 for blood type O patients, 

representing 13.1%, 18.7%, 22.7%, and 32.1% reductions, respectively. 

 The range in DSA mean waiting times to kidney transplantation fell significantly for all race 

subpopulations in this analysis. For the non-Hispanic White patient population, the range in DSA mean waiting 



times fell from 2.31 years in 2000 to 2.08 years in 2009 for blood type A patients, 2.81 years in 2000 to 1.65 

years in 2009 for blood type AB patients, 4.96 years in 2000 to 4.14 years in 2009 for blood type B patients, and 

4.12 years in 2000 to 3.24 years in 2009 for blood type O patients, representing 10.0%, 41.3%, 16.5%, and 

21.5% reductions, respectively. For the non-Hispanic Black patient population, the range in DSA mean waiting 

times fell from 4.59 years in 2000 to 3.75 years in 2009 for blood type A patients, 3.63 years in 2000 to 2.92 

years in 2009 for blood type AB patients, 5.35 years in 2000 to 4.63 years in 2009 for blood type B patients, and 

6.93 years in 2000 to 4.38 years in 2009 for blood type O patients, representing 18.2%, 19.6%, 13.6%, and 

36.7% reductions, respectively. For the Hispanic patient population, the range in DSA mean waiting times fell 

from 5.04 years in 2000 to 3.51 years in 2009 for blood type A patients, 2.72 years in 2000 to 1.51 years in 

2009 for blood type AB patients, 5.20 years in 2000 to 2.65 years in 2009 for blood type B patients, and 5.83 

years in 2000 to 3.18 years in 2009 for blood type O patients, representing 30.5%, 44.3%, 48.9%, and 45.4% 

reductions, respectively. For the Asian patient population, the range in DSA mean waiting times fell from 4.82 

years in 2000 to 2.30 years in 2009 for blood type A patients, 5.40 years in 2000 to 3.67 years in 2009 for blood 

type AB patients, 6.04 years in 2000 to 3.43 years in 2009 for blood type B patients, and 4.33 years in 2000 to 

3.35 years in 2009 for blood type O patients, representing 52.2%, 32.2%, 43.3%, and 22.6% reductions, 

respectively. 

5.3.2. Waitlist Mortalities 

 KSIM2 provides information with regards to the number of waitlist mortalities per DSA and year.  From 

this information, we can compare the total number of waitlist mortalities during 2000-2009 using current 

allocation policy compared to KSHARE2.  For blood type A, the number of total waitlist mortalities fell by an 

average of 216 patients per year, representing an 11.1% reduction.  For blood type AB, the number of total 

waitlist mortalities fell by 8 patients on average per year, representing a 6.6% reduction. For blood type B, the 

number of total waitlist mortalities fell by an average of 31 patients per year, representing a 4.7% reduction.  

For blood type O, the number of total waitlist mortalities fell by 154 patients on average per year, representing 

an 8.2% reduction. 



 We will now compare the total number of waitlist mortalities during the study period (2000-2009) 

following current allocation policy versus KSHARE2 for each age subpopulation. For blood type A patients, the 

number of waitlist mortalities fell by an average of 57.7 patients per year for patients less than 18 years old, 

134.9 patients per year for patients between 18 and 65 years old, and 23.4 patients per year for patients over 65 

years old, representing 27.5%, 15.0%, and 10.1% reductions, respectively. For blood type AB patients, the 

number of waitlist mortalities fell by an average of 2.1 patients per year for patients less than 18 years old, 5.1 

patients per year for patients between 18 and 65 years old, and 0.8 patients per year for patients over 65 years 

old, representing 12.3%, 5.7%, and 4.6% reductions, respectively. For blood type B patients, the number of 

waitlist mortalities fell by an average of 8.7 patients per year for patients less than 18 years old, 19.6 patients 

per year for patients between 18 and 65 years old, and 2.7 patients per year for patients over 65 years old, 

representing 7.7%, 3.6%, and 2.3% reductions, respectively. For blood type O patients, the number of waitlist 

mortalities fell by an average of 45.0 patients per year for patients less than 18 years old, 95.0 patients per year 

for patients between 18 and 65 years old, and 14.0 patients per year for patients over 65 years old, representing 

12.5%, 5.7%, and 3.5% reductions, respectively. 

 We will now compare the total number of waitlist mortalities during the study period (2000-2009) 

following current allocation policy versus KSHARE2 for each race subpopulation. For blood type A patients, 

the number of waitlist mortalities fell by an average of 90.4 patients per year for non-Hispanic White patients, 

76.0 patients per year for non-Hispanic Black patients, 35.6 patients per year for Hispanic patients, and 7.7 

patients per year for Asian patients, representing 11.7%, 22.0%, 23.3%, and 18.1% reductions respectively. For 

blood type AB patients, the number of waitlist mortalities fell by an average of 2.9 patients per year for non-

Hispanic White patients, 2.2 patients per year for non-Hispanic Black patients, 1.2 patients per year for 

Hispanic patients, and 1.0 patients per year for Asian patients, representing 5.1%, 4.4%, 16.1%, and 13.6% 

reductions respectively. For blood type B patients, the number of waitlist mortalities fell by an average of 7.4 

patients per year for non-Hispanic White patients, 10.1 patients per year for non-Hispanic Black patients, 5.4 

patients per year for Hispanic patients, and 4.5 patients per year for Asian patients, representing 2.6%, 2.8%, 

8.3%, and 8.6% reductions respectively. For blood type O patients, the number of waitlist mortalities fell by an 



average of 54.6 patients per year for non-Hispanic White patients, 37.7 patients per year for non-Hispanic Black 

patients, 38.4 patients per year for Hispanic patients, and 9.6 patients per year for Asian patients, representing 

4.9%, 4.7%, 10.9%, and 13.1% reductions respectively. 

5.3.3. Kidney Acceptance Behavior 

 As discussed in Section 3, KSIM2 assumes that each DSA will transplant the optimal percentage of 

shared kidneys allocated by KSHARE2, regardless of their actual kidney acceptance behavior.  KSIM2 also 

provides us with the kidney acceptance behavior necessary for KSHARE2 to be effective.  In comparing the 

actual with KSHARE2 kidney acceptance distributions for each DSA using a Chi-Squared test, 5 of the 58 

national DSAs have a significant shift in acceptance distribution (p < 0.05).  Thus, while 5 DSAs will have to 

shift their behavior, the 53 remaining DSAs will not have to change their kidney acceptance behavior to achieve 

the benefits provided by KSHARE2.  

 

6. Impact of KSHARE2 Kidney Sharing on Long-Run Transplantation System Behaviors 

 The results shown in Section 5 depict the impact of KSHARE2 on transplant system outcomes and 

behaviors when implemented for ten years. The goal of this analysis was also to create a strategy that best 

reduces long-run transplant system disparity. In Table 3, we provide the M/M/1/r+M fluid approximations of 

long-run transplant system national disparity by patient blood type for KSHARE2 versus actual allocation 

policy.  

Table 3: Fluid Approximations of Long-Run Transplant System Disparity following KSHARE2 and 

Current Allocation Policy 

 KSHARE 2 Actual 

Blood Type 

Transplant 

Rate 

Disparity** 

Mean 

Waiting Time 

Disparity** 

Mortality 

Rate 

Disparity** 

Transplant 

Rate 

Disparity** 

Mean Waiting 

Time 

Disparity** 

Mortality 

Rate 

Disparity** 

A 43% 5.2 43% 67% 9.1 67% 

AB 38% 3.8 38% 64% 7.1 64% 

B 46% 6.9 46% 82% 12.1 82% 

O 41% 6.0 41% 52% 9.2 52% 

**Disparity represented as the difference between the maximum and minimum Donor Service Area (DSA) waiting time. 



Long-Run Transplant Rate Disparity:  In the long-run, the probability of receiving a transplant following 

current policy varies across DSAs from 20% to 87% for blood type A patients, from 18% to 82% for blood type 

AB patients, from 6% to 88% for blood type B patients, and from 12% to 64% for blood type O patients. 

Comparatively, the long-run probability of receiving a transplant following KSHARE2 varies across DSAs 

from 39% to 82% for blood type A patients, from 51% to 89% for blood type AB patients, from 27% to 73% for 

blood type B patients, and from 30% to 71% for blood type O patients, representing 36%, 41%, 44%, and 21% 

reductions, respectively. 

Long-Run Mean Waiting Time to Transplantation Disparity:  In the long-run, the mean waiting time to 

transplantation following current policy varies across DSAs from 0.2 to 9.3 years for blood type A patients, 

from 0.2 to 7.3 years for blood type AB patients, from 0.2 to 12.3 years for blood type B patients, and from 0.3 

to 9.5 years for blood type O patients. Comparatively, the long-run mean waiting time to transplantation 

following KSHARE2 varies across DSAs from 1.4 years to 6.6 years for blood type A patients, from 0.84 years 

to 4.67 years for blood type AB patients, from 2.18 years to 9.05 years for blood type B patients, and from 2.41 

years to 8.43 years for blood type O patients, representing 43%, 46%, 43%, and 35% reductions, respectively. 

Long-Run Mortality Rate Disparity:  Following from the fluid approximations, percentage reductions in 

long-run disparities mortality rates should be similar to those of the transplant rates. the long-run, the 

probability of dying on the waitlist following current allocation policy varies across DSAs from 13% to 80% for 

blood type A patients, from 18% to 82% for blood type AB patients, from 12% to 94% for blood type B 

patients, and from 36% to 88% for blood type O patients. Comparatively, the long-run probability of dying on 

the waitlist following KSHARE2 varies across DSAs from 18% to 61% for blood type A patients, from 11% to 

49% for blood type AB patients, from 27% to 73% for blood type B patients, and from 29% to 70% for blood 

type O patients, representing 36%, 41%, 44%, and 21% reductions, respectively. 

 

7. Conclusions 

 Geographic disparity continues to grow over time in kidney transplantation, in direct conflict with 

federal mandate. As a result, patients who must seek transplantation close to home are disadvantaged in the 



system, and at a higher risk of dying of end stage renal disease prior to transplantation. While current efforts are 

focused on replacing the current kidney allocation policy at the patient level, system-level changes are 

necessary to reduce national geographic disparity(40). UNOS has recognized this important change (20), but 

has yet to define and test alternative strategies.  

 In this analysis, we have suggested a potential path to increased geographic equity via a sharing strategy 

that does not greatly impact current kidney allocation practices. KSHARE2 was motivated according to 

published beliefs of the transplant community (29, 41) and designed to build upon past, successful allocation 

policy variances (i.e. statewide sharing) (32).  

By KSHARE2, a procured kidney is offered first locally, then to a regional sharing partner, then to the 

reminder of the UNOS region, then to a national sharing partner, and ultimately nationally.  The strategy 

therefore does not change overall local, regional or national transplant volumes.  Instead, a proportion of 

kidneys allocated regionally will be reallocated to optimally fix regional disparity while a proportion of kidneys 

allocated nationally will be reallocated to optimally fix national disparity.  Further, this strategy only requires 

two sharing partnerships (one regional, one national) to be formed.  As such, this will be easier to implement at 

the policy level then if a DSA has numerous sharing partners to manage.  Finally, KSHARE2 provides the most 

reduction in geographic disparity compared to all other strategies without requiring immense change in kidney 

acceptance behavior for the majority of national DSAs. 

 Our simulated results show that KSHARE2 will incrementally reduce geographic disparity over time. 

Implementing KSHARE2 for the ten-year period from 2000 through 2009 would have reduced geographic 

disparity in DSA mean waiting times significantly (Table 2) for multiple patient subgroups. In addition, an 

average of 409 less waitlist deaths would have occurred annually, as patients would have received a transplant 

prior to becoming too sick to transplant. Finally, long-run transplant system outcomes due to the sustained use 

of KSHARE2 over time could dramatically decrease geographic disparity in kidney transplantation (Table 3). 

This benefit is mirrored across various age groups and racial demographics of interest.   

 The results from KSHARE2 occur under the assumption that the transplant community is willing to 

change two important transplant behaviors. First, KSHARE2 assumes that the transplant community would be 



willing to share 40% of regionally and nationally offered kidneys to optimal KSHARE2 sharing partners prior 

to regional and national kidney offerings. This would redirect the allocation process for approximately 7% of 

procured kidneys for transplantation each year. Second, five DSAs would need to significantly change their 

acceptance behavior towards transplanting lower quality kidneys. This may be a difficult proposition for these 

areas as they must meet mandated transplant recipient outcomes to remain accredited programs, but following 

KSHARE2, kidneys may potentially be allocated to these areas more efficiently. As a result, low quality 

kidneys will sustain less cold ischemic time (CIT), potentially making them more attractive for transplantation. 

  This study has some limitations. First, KSHARE2 results are based solely on simulation results. Ideally, 

we would recommend for UNOS to conduct appropriate case studies within the current transplant system to test 

the impact of KSHARE2 implementation. Second, transplant system retrospective data was only available for 

this study through 2009. Over time, the simulated impact of KSHARE2 should be updated to reflect the most 

current transplant system behaviors.  
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9. Appendix - Fluid Approximation Validation 

The validity of the M/M/s/r+M fluid approximations established by Whitt et al., 2004 is now examined 

for this transplantation system adaptation.  Fluid approximations of the transplant system assume a known and 

stable value of      and   (Whitt, 2004).  The most recent (2009) estimates of      and   shown in Davis et al., 

2013 will be used to determine long-run system approximations.  Since patient inter-arrival rates seeking 

transplantation are likely to increase in the future (REF), it is within reason to assume that the fluid 

approximation values discussed here will represent a lower bound on the actual long-run transplant system 

outputs.    

KSIM2 was used to simulate 50 years of the transplantation system from 2010 to 2060, with 100 

replications of KSIM2 for each blood type.  We calculated 95% confidence intervals for mean KSIM2 estimates 

of mean probabilities of waitlist mortality and transplantation, mean waiting time to transplantation, and mean 

waitlist length.  Each fluid approximation value was compared with the mean simulated value from the final 

five years of the simulation for each blood type.  Chi-Squared tests were used to test for significant differences 

between the simulated and approximated system values, with all p-values less than 0.05 considered significant. 

The long-run estimates across all DSAs are now compared according to the simulated and approximated 

values.  In Figure A1, the resulting values are compared for each blood type.  No significant differences were 

found when comparing simulated and approximated system values for all comparisons (p > 0.05) , implying that 

fluid approximations for the M/M/s/r+M system are appropriate for the transplant system adaptation. 



Figure A1: Long-Run System Output Estimates by Blood Type  

 


